Packing for <i>INDION</i> ® R	lesins					
Moist Resins		Dry Resins				
HDPE liner bags	25 / 50 lts	Dry Beads				
LDPE liner bags	0.5 cft / 1 cft / 25 lts	HDPE carbouys with				
Super sack	1000 lts / 35 cft	inner double plastic liner bags	25 / 50 kgs			
MS drums with liner bags	180 lts	·	_			
Fibre drums with liner bags	7 cft	Dry Powders				
PVC jars with liner bags	5 / 6 lts	HDPE carbouys with				
HDPE drums with liner bags	50 / 100 / 180 lts	inner double plastic liner bags	6 / 20 / 40 kgs			
Vaccum packing with LDPE bags	1 cft / 25 lts					

Protection of Ion Exchange Resins during Storage

Ion exchange resins, supplied in dry or moist condition, require proper care at all times. Always keep the resins drums / bags closed and in shade at a temprature between 10°C and 40°C.

Moist Resins: Resins which are supplied in moist condition should not be allowed to dry. Regularly open the drums / bags and check the condition of the resins. If the resin is not moist enough, add demineralised water to keep it in completely moist condition.

Dry Resins: Resins which are supplied as dry beads or dry powders should not be allowed to come in contact with moisture.

Measurement

Moist Resins: All water treatment resins and resins supplied in moist condition are generally sold on volume basis. The volume is measured in a column after backwashing, settling and draining of water to the bed surface. Dry Resins: All dry resins are sold on weight basis

Warning

Strong oxidising agents such as nitric acid, degrade ion exchange resins to a considerable extent. This may result in an explosive reaction. Thus, before using strong oxidising agents, consult sources knowledgeable in handling of such material.

Our state-of-the-art manufacturing facilities are ISO 9001, ISO 14001 & ISO 45001 certified

To the best of our knowledge the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice. Please contact our regional / branch offices for current product specifications.

INDION is the registered trademark of Ion Exchange (India) Ltd.

The Preferred Choice

Our INDION range is backed by sustained focus on customer needs, intensive product and application R&D, sound technical support and wide application knowhow. Add to this continuous innovation, worldclass quality, state-of-the-art ISO 9001 &14001 certified facilities, an FDA approved pharmaceutical grade resin manufacturing unit...and you get the perfect recipe that makes INDION the preferred choice across sectors for over five decades.

Wide Range. Extensive Applications.

A complete range of cation & anion resins for water and waste water treatment as well as a host of speciality applications - pharmaceutical excipients, catalysts, nuclear grade resins, chelating resins for brine softening and heavy metal removal, adsorbent grade resins, resins for removal of colour, odour, organics, nitrate & tannin, resins for purification of bio-diesel, sugar, food & beverages and many more...

$\mathbf{\hat{c}}$ ION EXCHANGE (INDIA) LTD.

International Division

R-14, T.T.C MIDC, Thane - Belapur Road, Rabale,

Navi Mumbai - 400 701 | Tel: +91 22 6857 2400

E-mail: export.sales@ionexchange.co.in

Overseas Offices - CLICK HERE

Bahrain | Bangladesh | Canada | Indonesia | Kenya

Malaysia | Oman | Saudi Arabia | Singapore | South Africa Sri Lanka | Tanzania | Thailand | UAE | USA

Corporate Office

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai - 400011 | Tel: +91 22 6231 2000 E-mail: ieil@ionexchange.co.in

Regional and Branch Offices - CLICK HERE

Bengaluru | Bhubaneswar | Chandigarh | Chennai | Delhi Hyderabad | Kolkata | Lucknow | Vadodara | Vashi Visakhanatnam

Manufacturing Units

India - Ankleshwar | Hosur | Patancheru | Rabale | Verna | Wada Overseas - Hamriyah | Kingdom of Bahrain | Indonesia | Bangladesh All India Service and Dealer Network

> www.ionindia.com | www.ionresins.com

R031R5 - 04211K

- Refinery & Petrochemical
- Steel, Power & Paper
- Food & Beverages
- Pharmaceuticals **Bio-technology & Electronics**
- Textiles, Sugar, Auto & Mini-steel
- Cement & Chemicals

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	INDION (Indus Controlled Parti	strial Water Tr icle Size Ion Ex		s (CPS Resins)					
	Anion Exchange I	Resin									
SBA	Gel	GS 3000 (Type 1)	Styrene DVB	-N+ R3	CI-	0.50 – 0.65 (effective size)	48 - 58	60 (OH)	1.3	Cl ⁻ to OH ⁻ 25 - 30	Demine Conden
(Cation Exchange	Resins	1		•	1	1	1			
SAC	Cul	2250 Na	Styrene DVB	-SO3-	Na+	0.50 – 0.65 (effective size)	43 - 50	120	2.0	Na ⁺ to H ⁺ 8 approx.	Premium
SAC	Gel	2250 H	Styrene DVB	-SO3_	H+	0.50 – 0.65 (effective size)	49 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Premium
		Industrial \	Nater Treatme	nt					-		
	Anion Exchange										
	lsoporous	FF-IP (Type 1)	Crosslinked Polystyrene	-N+ R3	CI-	0.3 - 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Demine
		FF–IP (MB)	Crosslinked Polystyrene	$-N^+ R_3$	CI ⁻	0.3 – 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Used in
		N–IP (Type 2)	Crosslinked Polystyrene	$-N^+ R_3$	CI ⁻	0.3 – 1.2	45 – 53	40 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Deminer
	Gel	GS 300 (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.3 – 1.2	48 – 58	60 (OH [_])	1.3	Cl ⁻ to OH ⁻ 25 - 30	Deminer condens
		GS 300 (OH)	Styrene DVB	-N+ R3	OH-	0.3 – 1.2	60 – 70	60 (OH)	1.0	Cl ⁻ to OH ⁻ 25 – 30	Premium deminer
SBA		GS 400 (Type 2)	Styrene DVB	-N+ R3	CI	0.3 – 1.2	45 - 51	40 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Deminer
		810 (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.3 – 1.2	56 – 63	60 (OH)	1.0	Cl ⁻ to OH ⁻ 15 - 20	Deminer
		810 HC (Type 1)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 – 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 - 20	Premium co-curre
	Macroporous	810 SO ₄	Crosslinked polystyrene	-N R ₄ +	SO ₄	0.45 – 0.6 (effective size)	56 – 63	60 (OH ⁻)	1.0 (CI)	Cl ⁻ to OH ⁻ 15 – 20	Used in
	Macroporous	830 (Type 1)	Styrene DVB	$-N^+ R_3$	CI-	0.3 – 1.2	57 – 66	80 (CI [_])	0.95	Cl ⁻ to OH ⁻ 7 – 17	Remova
		820 (Type 2)	Styrene DVB	$-N^+ R_3$	CI ⁻	0.3 – 1.2	54 – 61	40 (OH)	1.0	Cl ⁻ to OH ⁻ 10 – 15	Deminer
		820 HC (Type 2)	Styrene DVB	$-N^+ R_3$	CI ⁻	0.3 – 1.2	46 – 53	40 (OH)	1.2	Cl ⁻ to OH ⁻ 10 - 20	Premium co-curre
WBA	Macroporous	850	Styrene DVB	$-NR_2$ $-N^+ R_3$	Free base	0.3 – 1.2	47 – 55 (Cl [–])	60	1.5	FB to hydrochloride 25 max	Remova
(Cation Exchange	Resins	1		F		1				
		220 Na	Styrene DVB	- \$0 ₃ ⁻	Na+	0.3 – 1.2	50 - 55	140	1.8	Na ⁺ to H ⁺ 8 approx.	Standar
		222 Na	Styrene DVB	- \$0 ₃ ⁻	Na+	0.3 – 1.2	47 – 53	120	1.92	Na ⁺ to H ⁺ 8 approx.	Premium
SAC	Gel	223 H	Styrene DVB	- \$0 ₃ ⁻	H+	0.3 - 1.2	49 – 55	120	1.9	Na ⁺ to H ⁺ 8 approx.	Premium in regen
		225 H	Styrene DVB	- \$O ₃ ⁻	H+	0.3 – 1.2	49 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Premium
*meq/o	dry a								SAC: Strong Acid	Cation, SBA: Strong I	Rase Anion V

*meq/dry g

3

Applications

neralisation in co-current and countercurrent mode. ensate polishing & caprolactum purification.

um grade cation exchange resin for water softening.

um grade cation exchange resin for demineralisation.

neralisation in co-current and countercurrent mode.

n mixed bed.

neralisation in co-current and countercurrent mode.

neralisation in co-current and countercurrent mode. nsate polishing & caprolactum purification.

Im grade anion exchange resin used for eralisation in regenerable mixed bed application.

eralisation in co-current and countercurrent mode.

neralisation in co-current and countercurrent mode.

Im grade anion exchange resin for demineralisation in rent and countercurrent mode.

n condensate polishing unit.

val of organics & colour from water.

eralisation in co-current and countercurrent mode.

um grade anion exchange resin for demineralisation in rrent and countercurrent mode.

val of strong acids from water.

ard grade cation exchange resin for water softening.

um grade cation exchange resin for water softening.

Im grade cation exchange resin for demineralisation enerable mixed bed application.

um grade cation exchange resin for demineralisation.

, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

INDION° Ion Exchange Resins

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml		
			Nater Treatme	ent							
C	ation Exchange	Resins				1					
		225 Na	Styrene DVB	- SO ₃ ⁻	Na+	0.3 - 1.2	43 – 50	120	2.0	Na+ to H+ 8 approx.	Premiu
		525 H	Styrene DVB	-SO3_	H⁺	0.3 – 1.2	44 - 49	120	1.95	Na+ to H+ 6 approx.	Special for mix
		525 Na	Styrene DVB	-\$O ₃ ⁻	Na+	0.3 – 1.2	38 - 44	130	2.15	Na ⁺ to H ⁺ 6 approx.	Premiu
	Gel	225 Na F	Styrene DVB	-SO3_	Na⁺	0.3 - 1.2	43 – 50	140	2.0	Na⁺ to H⁺ 8 approx.	In the t water u to NSF GOLD
AC		222 Na F	Styrene DVB	- SO3-	Na+	0.3 – 1.2	47 – 53	120	1.92	Na⁺to H⁺ 8 approx.	In the to water u to NSF GOLD
		222 Na BL	Styrene DVB	- SO3 ⁻	Na+	0.3 – 1.2	46 - 51	140	1.9	Na+ to H+ 8 approx.	Solvent potable
		303	Styrene DVB	- SO3_	H+	0.3 - 1.2	49 – 55	120	2.0 (Na+)	Na ⁺ to H ⁺ 8 approx	Colour of exha
		730	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	54 – 57	120	1.7 (Na+)	Na+ to H+ 2 - 6	Recover
	Macroporous- SPL	790	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	51 – 55	120	1.9 (Na+)	Na+ to H+ 2 – 6	Demine conden
		790 C	Crosslinked polystyrene	- SO ₃ -	H⁺	0.45 _0.6 (effective size)	51 – 55	120	1.7	Nato H 6	Used in
VAC-	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 - 1.2	46 - 54	120	4.0	H+ to Na+ 80 - 120	Remove
/AC-	Macroporous	662	Methacrylic DVB	- COO ⁻	H+	0.3 – 1.2	44 – 50	100	3.8	H+ to Na+ 70 max	Remove
N	\ixed Bed Resins	-									
		MB 6SR/ Refill Pack	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Super-r ultrapu
		MB – 11	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:1 vol produc
		MB – 11 GMB	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 - 1.2	-	60	-	-	Non-re water is
		MB – 12	Styrene DVB	- SO ₃ - - N+ R ₃	H⁺ OH [−]	0.3 - 1.2	-	60	-	-	1:2 stor and an water.
		MB – 115	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	40:60 v purity d
		MB 151	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Non-re
		MB 1150 HP	Styrene DVB	- SO ₃ ⁻ - N ⁺ R ₃	H⁺ OH [−]	0.5 – 0.65 (effective size)	-	60	-	-	Product industry
С	il Removal Resir	า									
	SPL	Oleophilic Resin	Styrene DVB	- SO ₃ ⁻	Na+	0.3 - 1.2	35 – 41	120	1.6 to 1.7	-	Oil rem

Applications

Im grade cation exchange resin for water softening.

l grade cation exchanger for use in layered bed and ked bed condensate polishing.

Im grade cation exchange resin for water softening.

treatment of foodstuffs, beverages, potable water and used in the processing of food. This product conforms / ANSI / CAN 61, NSF / ANSI 372 & is certified with SEAL from WQA.

treatment of foodstuffs, beverages, potable water and used in the processing of food. This product conforms / ANSI / CAN 61, NSF / ANSI 44 & is certified with SEAL from WQA.

t free cation – in the treatment of foodstuffs, beverages, e water and water used in the processing of food.

r indicating resin. Colour changes at the time austion.

ery of metals from aqueous and non-aqueous streams.

eralisation in co-current, countercurrent mode and nsate water treatment.

n condensate polishing unit.

al of alkaline hardness from water.

al of alkaline hardness from water.

regenerated mixture of cation and anion for producing ure water.

lume ratio of cation in H⁺ and anion in OH⁻ to ce high purity demineralised water.

egenerable mixed bed application where highest quality s required. Colour changes at the time of exhaustion.

vichiometrically equivalent volume ratio of cation in H⁺ nion in OH⁻ to produce high purity demineralised

volume ratio of cation and anion to produce high demineralised water.

egenerable EDM application.

ction of high purity water in electronic & pharma ry.

noval from steam condensate of petroleum refineries, eum products & water contaminated with hydrocarbon.

Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/m	Reversible Swelling %	
		Potable W	later Treatmen	t					·		
<u> </u>	olyiodide Resin	1		1		1	1			1	
	SPL	SRCD I	Crosslinked Polymer impregnated with iodine	- N+ R3	₃	0.3 – 1.2	-	15 – 35	-	-	Disinfe
A	Arsenic and Iron	Removal Resin	1	1		1	1	1		1	
		ASM	Crosslinked Polystyrene	-	-	0.3 – 1.2	47 – 54	60	0.5 - 2.0 g As/l	-	Removent to NSF from W
	SPL	ISR	Crosslinked Polystyrene	-	-	0.3 – 1.2	45 – 55	45	-	-	Remov to NSF from V
F	luoride Remova	l Resin	1	1	1	1	1	1	1		
	SPL	RS-F	Styrene DVB	NA	-	0.3 - 1.2	50 – 60	60	-	-	Removo
F	Perchlorate Remo	oval Resin		1	1	1	1	1	1	1	
	SPL	PCR	Crosslinked Polystyrene	$-NR_{4}^{+}$	CI ⁻	0.3 – 1.2	35 – 45	90 (Cl ⁻)	0.8	-	Selectiv
(Cation Exchange	Resins		1	1	1	1		1	1	1
	C Gel	225 Na F	Styrene DVB	-SO3_	Na+	0.3 – 1.2	43 - 50	140	2.0	Na ⁺ to H ⁺ 8 approx.	High pu and foc NSF / A
SAC		2250 Na F	Styrene DVB	-SO3_	Na+	0.5 – 0.65 (effective size)	43 – 50	140	2.0	Na ⁺ to H ⁺ 8 approx.	High p water 8
		222 Na NS	Crosslinked Polystyrene	- \$0 ₃ ⁻	Na+	0.3 - 1.2	43 – 49	120	1.9	Na+ to H+ 8 approx.	Water s ANSI / The pro
VAC	Microporous	266	Crosslinked Polyacrylic	- COO ⁻	H÷	0.3 - 1.2	46 – 54	120	4.2	H+ to Na+ 65 max	Removo
ŀ	Anion Exchange	Resin	£	8	1	1	<u>k</u>			1	
BA	Macroporous	NSSR (Type 1)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 – 1.2	45 – 55	100 (CI [_])	0.9	Cl [−] to NO₃ [−] Negligible	Selectiv conforr GOLD
C	Dxidation , Reduc	tion Catalyst	1	1		•	1		1	1	
	SPL	ORC	-	-	-	0.3 – 1.2	-	-	-	-	Removo
			Grade Resins			1	1				1
C	Cation Exchange	Resins	1	1			1				
		223 H NG	Styrene DVB	-SO3_	H⁺	0.3 - 1.2	49- 55	120	1.9	-	High p in nucle
SAC	Gel	2230 H NG	Styrene DVB	-SO3_	H⁺	0.5 – 0.65 (effective size)	49 - 55	120	1.9	-	High p use in r
		223 Li	Styrene DVB	-SO3_	Li+	0.3 – 1.2	47 – 53	120	1.9	-	High p nuclear
ŀ	Anion Exchange	Resins	1	1	1	1				1	
BA	Gel	ARU 104	Crosslinked Polystyrene	N+R3	CI-	0.3 – 1.2	38 - 42	80	1.6	-	Recove
		GS 300 NG	Styrene DVB	$-N^+R_3$	OH-	0.3 – 1.2	60 max	60	1.1	-	High st nuclear
meq	/dry g								SAC: Strong Acid Catior	a, SBA: Strong Base	Anion, WBA: Y
			6								7

Applications

ection of potable water.

val of Arsenic from potable water. This product conforms -/ ANSI / CAN 61 & is certified with GOLD SEAL VQA.

val of dissolved Iron from water. This product conforms F / ANSI / CAN 61 & is certified with GOLD SEAL WQA.

al of fluoride from water.

ve removal of perchlorate from ground water.

ourity food grade resin for treatment of potable water od stuff. This product conforms to NSF / ANSI / CAN 61, ANSI 372 & is certified with GOLD SEAL from WQA.

purity CPS food grade resin for treatment of potable & food stuff.

softening application. This product conforms to NSF / / CAN 61 & is certified with GOLD SEAL from WQA. oduct is manufactured by a non solvent process.

al of alkaline hardness from water.

ve removal of Nitrates from water. This product rms to NSF / ANSI / CAN 61 & is certified with 9 SEAL from WQA.

al of halogens and oxidising agents.

purity ion exchange resin (in hydrogen form) for use lear power plants.

purity CPS ion exchange resin (in hydrogen form) for nuclear power plants.

purity ion exchange resin (in lithium form) for use in ir power plants.

ery of Uranium from leach liquors.

trength strong base anion resin (Type I) for use in ir power plants.

: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Nuclear	Grade Resins								
	Anion Exchange	Resins									
SBA	Gel	GS 3000 NG	Styrene DVB	$-N^+R_3$	OH-	0.5 – 0.65 (effective size)	60 max	60	1.1	-	High s nucleo
UDI	001	GS 80	Crosslinked Polystyrene	$-N^+R_3$	- SO ₃ -	0.3 – 1.2	47 – 55	-	0.8	=	Oxyge
	Mixed Bed Resins	5	1			1	1			1	
	Mixed Resins	CAM - 14	Styrene DVB	-SO ₃ ⁻ -N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:4 vo purity
	Mixed Resilis	CAM – 19	Styrene DVB	-SO ₃ ⁻ -N ⁺ R ₃	Li⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:9 vc power
		Catalyst	Grade Resins			•	•	•			
	Cation Exchange	Resins									
		140	Styrene DVB	- SO ₃ -	H+	0.42 - 1.2	<3	150	4.8*	-	Cataly
	Macroporous	130	Styrene DVB	- SO ₃ ⁻	H+	0.42 - 1.2	<3	150	4.8*	-	Cataly reaction
SAC		190	Styrene DVB	- SO ₃ ⁻	H+	0.42 – 1.2	<3	150	4.7*	-	Premi esterif
	Gel	770	Styrene DVB	- SO ₃ ⁻	H+	0.3 - 1.2	63 - 66	120	1.4	-	Cataly olefin
	Anion Exchange	Resin	1	1	I	1	1			1	<u> </u>
WBA	Macroporous	860	Styrene DVB	$-NR_2$ $-N^+R_3$	Free base	0.3 – 1.2	52 – 56 (Cl ⁻)	60	1.4	FB to hydrochloride 25 max	As cat
		Hydro	ometallurgy	·						•	
	Chelating Resins										
		MSR	Styrene DVB	Thiol	H+	0.3 – 1.2	38 - 43	60	3.6*	-	Select effluer
		TCR	Styrene DVB	Thio-Uronium	_	0.3 – 1.2	41 - 47	80	1.4	-	Select
		BSR	Styrene DVB	Amino Phosphonic	Na+	0.42 – 1.2	60 – 70	80	2.0 (H+)	H ⁺ to Na ⁺ <45 H ⁺ to Ca ⁺⁺ <20	
		SIR	Styrene DVB	Iminodiacetic	Na+	0.3 – 1.2	52 – 58	90	2.2 (H+)	-	Extrac from v
(Cation Exchange	Resins	1	1	1					1	
		790	Styrene DVB	-SO3_	H+	0.3 – 1.2	51 – 55	120	1.9 (Na+)	Na+ to H+ 2 – 6	Recov
SAC	Macroporous	730	Styrene DVB	-SO3_	H+	0.3 – 1.2	54 – 57	120	1.7 (Na+)	Na+ to H+ 2 - 6	Recov
		740	Styrene DVB	-SO3-	H+	0.3 – 1.2	64 - 68	120	1.3 (Na+)	Na+ to H+ 2 – 6	Recov
WAC	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 - 54	120	4.0	H+ to Na+ 80 – 120	Recove
*meq/o	dry a						•		SAC: Strong Acid Cation	, SBA: Strong Base Ar	nion, WBA:

*meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

n strength CPS strong base anion resin (Type I) for use in ear power plants.

gen scavenging.

volume mixture of cation and anion to produce high ty alkaline water for use in nuclear power plants. volume mixture of cation and anion. Used in nuclear

er plants.

alyst for organic reactions like esterification etc.

alyst grade resin for esterification and alkylation tions.

nium catalyst for specialised applications such as rification, alkylation etc.

alyst for manufacture of butyl acetate, ethylacetate, n hydration & bisphenol A.

atalyst in aldolization reactions.

ctive adsorption of bivalent mercury from industrial pents.

ctive recovery of mercury and precious metals.

alcification of secondary brine in chloralkali industry.

action and recovery of metals, removal of heavy metals n various organic or inorganic chemical products.

overy of metals from aqueous and non-aqueous streams.

Properties and Applications - Summarised Data

10

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
-	Anion Exchange R		rocess Applicatio	n							
	0	GS 300 (OH) (Type I)	Styrene DVB	$-N^+ R_3$	OH	0.3 – 1.2	60 – 70	60 (OH)	1.0	Cl ⁻ to OH ⁻ 25 – 30	Remova
SBA	Gel	950 (Type I)	Cross linked Polyacrylic	- COO	CI-	0.4 – 1.2	54 – 64	80 (Cl)	1.2	CI ⁻ to OH ⁻ 25 – 30	Remova
	Macroporous	830 S (Type 1)	Styrene DVB	$-N^+ R_3$	CI	0.3 – 1.2	57 – 66	80 (CI [−])	0.95	CI ⁻ to OH ⁻ 7 – 17	Remove streams & is cert
		930 A (Type 1)	Crosslinked Polyacrylic	$-N^+ R_3$	CI ⁻	0.3 – 1.2	65 – 72	80 (CI [_])	0.8	Cl ⁻ to OH ⁻ 10 – 15	Remova
	Macroporous	845 (Type 1)	Styrene DVB	$-N^{+} R_{2} -N^{+} R_{3}$	-	0.3 – 1.2	52 – 58	60	1.1	CI ⁻ to OH ⁻ 20%	Treatme glucose
WBA		860 S	Styrene DVB	$-N^{+} R_{2} \\ -N^{+} R_{3}$	Free base	0.3 – 1.2	50 – 58 (Cl [–])	60	1.3	FB to hydrochloride 25 max	Treatme glucose
VV DA		870	Styrene DVB	$-N^+ R_2$	Free base	0.3 – 1.2	52 – 62	60	1.6	FB to hydrochloride 25 max	Deacidi
		880	Styrene DVB	$-N^{+} R_{2} \\ -N^{+} R_{3}$	Free base	0.3 – 1.2	58 – 63	60	1.2	FB to hydrochloride 25 max	Colour
		890	Styrene DVB	$-N^{+}R_{2}$ $-N^{+}R_{3}$	Free base	0.3 - 1.2	52 – 56	60	1.4	-	Remova applicat
(Cation Exchange	Resins									
SAC	Macroporous	790	Styrene DVB	-SO3_	H+	0.3 - 1.2	51 – 55	120	1.9 (Na⁺)	Na+ to H+ 2 – 6	Special higher a heavy n
WAC	Macroporous	652	Methaacrylic acid DVB	C00 ⁻	H+	0.3 – 1.2	47 – 55	100	3.5	H ⁺ to Na ⁺ 75 min	Ideal fo tempore
	Gel	236 P	Crosslinked Polyacrylic	- COO ⁻	H⁺	0.3 – 1.2	46 – 54	120	4	H+ to Na+ 80 – 120	Remova
	Mixed Bed Resin										
		GMW 11 (GVI)	Crosslinked Polystyrene	-SO ₃ ⁻ -N ⁺ R ₂	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Specially applicat

* meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

11

Applications

val and recovery from process streams.

val of high level of colour bodies from sugar syrup.

val of colour bodies from sugar syrup and other process ns. This product conforms to NSF / ANSI / CAN 61 ertified with GOLD SEAL from WQA.

val of high level of colour bodies from sugar syrup.

nent of non-aqueous solution such as deashing of se, dextrose, sorbitol, gelatin & purification of MSG.

nent of non-aqueous solution such as deashing of se, dextrose, sorbitol, gelatin & purification of MSG.

idification of process streams.

removal from textile effluent.

val of strong acids in non water, pharma & speciality cations.

al grade cation exchanger for applications demanding r oxidation stability such as gelatin purification, metal removal etc.

for the uptake of toxic / undesirable heavy metals, prary hardness from process liquor and industrial water.

val of alkaline hardness from water in Beverage Industry.

ally developed mix of resins for use in electroplating stations. Colour changes at the time of exhaustion.

INDION[®] Ion Exchange Resins Properties and Applications - Summarised Data

Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml		
	Pharmaceut	tical Grade Res	ins							
	204	Crosslinked Polyacrylic	- COO ⁻	H⁺	< 0.15	<u><</u> 5	-	10.0*	-	Taste mo Roxithro B ₁₂ stabi
	234	Crosslinked Polyacrylic	- COO ⁻	K+	< 0.15	<u><</u> 10	-	-	-	Taste ma Chloroq
	254	Styrene DVB	-\$O ₃ ⁻	Na+	< 0.15	<u><</u> 10	-	-	-	Sustaine
SPL	294	Crosslinked Polymethacrylic	-COO ⁻	K+	< 0.15	<u><</u> 10	-	-	-	Tablet di of Polac
	404	Styrene DVB	-\$O ₃ ⁻	Ca++	< 0.15	<u><</u> 8	-	-	-	Treatme
	454	Styrene DVB	$-N^+ R_3$	CI-	>0.075 - 45% <0.15 - 1%	<u><</u> 12	-	1.8 – 2.2**		Cholesty levels. To active in
	464	Crosslinked Polymethacrylic	- COO ⁻	H⁺	< 0.15	<u><</u> 5	-	10*	-	Nicotine

* meq/dry g

** sodium glycocholate exchange capacity

Applications

masking of bitter drugs such as Norfloxacin, Ofloxacin, romycin, Dicyclomine Hydrochloride, Famotidine and abilisation etc.

masking of bitter drugs such as Ciprofloxacin, roquine Phosphate etc. as well as tablet disintegration.

ined release agent in drug formulations.

t disintegrant/taste masking. Product meets specifications acrilin Potassium, USP.

ment of Hyperkalaemia.

estyramine resin – used for lowering serum cholesterol Taste masking, drug stabilisation, controlled release & ingredient.

ine taste masking and sustained release.

SPL : Speciality

INDION[°] Ion Exchange Resins Properties and Applications - Summarised Data

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Adsorben	t Grade Resin	s							
		PA 500	Styrene DVB	-	-	0.3 – 1.2	63 – 67	150	-	-	Purificat
	SPL	PA 600	Styrene DVB	-	-	0.3 – 1.2	55 – 65	130	-	-	High su substan
		PA 800	Styrene DVB	-	-	0.3 – 1.2	54 - 60	150	-	-	Phenol r
		PA 1200	Styrene DVB	-	-	0.4 - 1.2	52 – 62	120	-	-	High su substan
		Biodiesel Manu	facture & Purif	ication							
		190	Styrene DVB	-SO3_	H+	0.42 - 1.2	<3	150	4.7*	-	Esterifico
	SPL	BF 100	Styrene DVB	$-N^+ R_3$	OH-	0.3 – 1.2	63 – 75	-	0.9	-	Purificat 0.5 - 1.0
		BF 170	Styrene DVB	Acidic	-	0.3 – 1.2	<u><</u> 3	-	-	-	Purificat soap, m

* meq/dry g

For more information visit us at : www.ionresins.com

We offer several other speciality resins for a wide variety of applications. These include fine mesh resins for chromatographic separations; dessicant grade resins for moisture removal from sovlents & resins for peptide synthesis.

Applications

cation of Aloe Vera juice and Methi extract.

surface area polymers for recovering non-polar ances from aqueous and non aqueous streams.

I removal from HCI and effluent.

surface area polymers for recovering non-polar ances from aqueous and non aqueous streams.

ication of FFA.

cation of raw bio-diesel to remove residual FFA from 1.0% to less than 0.1%.

cation of raw bio-diesel for removal of glycerine, moisture etc.

SPL : Speciality